

1 **A miniature Marine Aerosol Reference Tank (miniMART) as 2 a compact breaking wave analogue**

3

4 **M.Dale Stokes¹, Grant Deane¹, Douglas Collins², Christopher Cappa³, Timothy
5 Bertram⁴, Abigail Dommer¹, Steven Schill⁴, Sara Forestieri³, Mathew Survilo³**

6 [1]{Marine Physical Laboratory, Scripps Institution of Oceanography, La Jolla, CA, USA}

7 [2]{Dept. of Chemistry, University of Toronto, Ontario, Canada}

8 [3]{Dept. of Civil and Environmental Engineering, University of California, Davis, CA,
9 USA}

10 [4]{Dept. of Chemistry, University of Wisconsin, Madison, WI, USA}

11

12 Correspondence to: M.D. Stokes (dstokes@ucsd.edu)

13 **Abstract**

14 In order to understand the processes governing the production of marine aerosols, repeatable,
15 controlled methods for their generation are required. A new system, the miniature Marine
16 Aerosol Reference Tank (miniMART) has been designed after the success of the original
17 MART system, to approximate a small oceanic spilling breaker by producing an evolving
18 bubble plume and surface foam patch. The smaller tank utilizes an intermittently plunging jet
19 of water produced by a rotating water wheel, into an approximately 6 L reservoir to simulate
20 bubble plume and foam formation and generate aerosols. This system produces bubble
21 plumes characteristic of small whitecaps without the large external pump inherent in the
22 original MART design. Without the pump it is possible to easily culture delicate planktonic
23 and microbial communities in the bulk water during experiments while continuously
24 producing aerosols for study. However, due to the reduced volume and smaller plunging jet,
25 the absolute numbers of particles generated are approximately an order of magnitude less than
26 in the original MART design.

27

1 1 Introduction

2 Sea Spray Aerosols (SSA) are generated over a large portion of the Earth's surface and
3 form a large fraction of aerosol particulates present in the atmosphere (e.g. Lewis and
4 Schwartz 2004). They are critically important components in global biogeochemical cycles
5 (e.g. Solomon et al. 2007) and important modifiers of atmospheric radiative budgets. Marine
6 aerosols are generated primarily by processes associated with the formation of bubble plumes
7 and foams generated by the actions of breaking surface waves. Breaking waves themselves
8 play an important role in many additional processes at the air-sea interface including mixing,
9 current formation, heat and momentum flux, and the bubbles entrained by breaking waves
10 enhance gas transport, scavenge biological surfactants, and generate ambient noise in addition
11 to creating aerosol particles (e.g. Woodcock 1953, Wallace and Duce 1978, Rapp and
12 Melville 1990, Tseng et al. 1992).

13 Oceanic whitecaps (which are the high optical albedo footprint of a breaking surface
14 wave) typically form once wind speeds greater than approximately 3 ms^{-1} blow over a sea
15 surface of sufficient fetch. Breaking itself includes the impaction of the overturning wave
16 crest with the sea surface and subsequent entrainment and fragmentation of air into a plume of
17 bubbles. The plume evolves over a timescale of seconds to a few tens of seconds due to
18 buoyancy and turbulent flow forces acting on the entrained bubbles. The air/water mixture of
19 the breaking wave crest and the bubbles that reach the sea surface after breaking form the
20 high albedo patch characteristic of a whitecap. Surface bubbles and the dense aggregations of
21 bubbles that create surface foams, are the primary source of marine aerosols as the bubbles
22 rupture and produce a spray of jet and fluid film droplets that are ejected into the atmosphere
23 (Lewis and Schwartz 2004).

24 In order to study marine aerosol production it is beneficial to have a standardized
25 method of creating them that mimics the formation processes associated with marine foam in
26 repeatable, controlled conditions in the laboratory. Several different methods have been used
27 to generate surrogate marine aerosols within enclosed tanks including pressurized atomizers
28 (Svenningsson et al. 2006, Riziq et al. 2007, Saul et al. 2006, McNeill et al. 2006, Braban et
29 al. 2007, Niedermeier et al. 2008, Taketani et al. 2009), forcing air through glass filters or
30 sintered materials (Clore et al. 1991, Martensson et al. 2003, Sellegrí et al. 2006, Keene et al.
31 2007, Tyree et al. 2007, Wise et al. 2009, Hultin et al. 2010, Fuentes et al. 2010) and by a
32 plunging water jet (Cipriano and Blanchard 1981, Sellegrí et al. 2006, Facchini et al. 2008,

1 Fuentes et al. 2010). The detailed investigations by Sellegrí et al. (2006) and Fuentes et al.
2 have shown that the best method for the generation of proxy marine aerosols is by
3 creating a bubble plume from a plunging jet of water. In addition Collins et al. (2014) has
4 shown that the method of bubble production influences the chemical composition of
5 laboratory-generated sea spray aerosol, with a plunging water method showing better
6 agreement with aerosol produced from laboratory breaking waves than did aerosol generated
7 via the sintered glass filter method. The plunging jet apparatus used by Fuentes et al. (2010)
8 used a relatively small volume of water (6 L) in an 11 L tank filled to a depth of 11 cm.
9 Using a modification of the prior plunging water techniques, Stokes et al (2013) developed
10 the Marine Aerosol Reference Tank (MART) system that accurately reproduced the bubble
11 plumes and marine aerosols characteristic of an oceanic whitecap. By using an intermittent
12 plunging sheet of water in a larger (210 L) tank bubble plumes are formed that mimic the
13 oceanic bubble size distribution, including critical bubbles larger than the Hinze scale (the
14 transition point between bubbles stabilized by surface tension and bubbles subject to
15 fragmentation by turbulence at approximately 1 mm scale), and have a temporal evolution
16 similar to plumes measured in the ocean and in large laboratory wave tanks.

17

18 **2 Whitecap foam and bubble size distributions**

19 The two primary production mechanisms of sea spray aerosols at moderate wind
20 speeds are the disintegration of the thin fluid films associated with whitecap foam (film drops)
21 and the breakup of the jet of water formed at the base of a bubble shortly after the rupture of
22 its film (jet drops). Both of these mechanisms are known to be sensitive to bubble size. It
23 follows that an essential requirement of any laboratory system designed to produce nascent
24 SSA is the reproduction of the numbers and sizes of bubbles entrained by breaking waves in
25 the open ocean. Few bubble size distributions from natural breaking waves have been
26 acquired because of the difficulty of making measurements in stormy conditions and other
27 natural hazards (Herrero 1985, Melville 1996, de Leeuw and Cohen 2002, Stokes et al. 2002).
28 However, some oceanic measurements are available as well as a number of laboratory studies
29 (e.g. Monahan and Zeitlow 1969, Cipiriano and Blanchard 1981, Bezzabotnov et al. 1986,
30 Lamarre and Melville 1994, Loewen et al. 1995, Leighton et al. 1996, Deane and Stokes
31 2002, de Leeuw and Cohen 2002, de Leeuw and Leifer 2002, Leifer and de Leeuw 2002,
32 2006, Stokes et al. 2002) and are summarized in Figure 1 of Stokes et al. (2013). It is now

1 known that there is a scale dependence to the bubble creation physics, differentiated by a
2 length scale known as the Hinze scale (Deane and Stokes 2002). The Hinze scale (a_H) defines
3 the radius of a bubble for which surface tension forces, which tend to keep bubbles spherical,
4 are disrupted by distorting pressure fluctuations associated with fluid turbulence. This scale is
5 of the order of 1 mm in spilling and breaking waves. Bubbles smaller than the Hinze scale are
6 stabilized to fragmentation by fluid turbulence whereas bubbles larger than this scale are
7 subject to a turbulent fragmentation cascade.

8 The power law dependence of the bubble size distribution as a function of bubble radius
9 is also different for bubbles smaller and larger than the Hinze scale. Smaller bubbles have a
10 somewhat variable power law scaling, a^{-n} with n taking values between approximately 1 to 2.
11 The physics of bubble fragmentation and bubble degassing drives a steeper power law
12 dependence for bubbles larger than the Hinze scale with n taking values between
13 approximately 3 to 4 (Figure 1). Important points are: 1, breaking oceanic whitecaps can
14 produce large bubbles, greater than 1 mm radius and up to 4 mm radius (Bowyer 2001), and
15 2, the power law scaling of the generation of these bubbles is controlled by fluid turbulence
16 within the whitecap and differentiated by the Hinze scale. In order to accurately reproduce
17 nascent SSA, the laboratory bubble generation mechanism needs to produce bubbles larger
18 than the Hinze scale and reproduce the power law dependence those bubbles acquire through
19 fragmentation in fluid turbulence.

20

21 **3 The miniature Marine Aerosol Reference Tank (miniMART)**

22 The original MART system was constructed to closely mimic the bubble plume, foam,
23 and aerosol generating mechanisms active during oceanic wave breaking and to provide a
24 portable, controllable environment in which to explore and sample these processes (Stokes et
25 al 2013). The primary design of MART included a flow-controlled closed-loop circulation
26 system that draws water from the tank bottom, a tank-top spillway or waterfall to produce a
27 plunging sheet that impacts the water surface within the tank to produce a bubble plume, and
28 an air-tight headspace for controlled aerosol sampling while the system is operating. By
29 varying the temperature of the tank contents, the water chemistry and the characteristics of the
30 plunging sheet (volume, angle and distance of drop, timing of the intermittency) a wide range
31 of experimental conditions can be realized. The tank itself can also be used as an incubator for
32 the growth of planktonic organisms to investigate the influence of biogenic exudates on SSA

1 formation (Lee et al. 2015). A limitation with the MART system is that it can be difficult to
2 culture delicate organisms in the reservoir while the external circulation pump (1/3 HP
3 centrifugal pump) is operational because the high flow rates (70 L min^{-1} within the pump
4 casing and up to 15 L min^{-1} in the waterfall flow) create high levels of fluid shear that is
5 damaging to fragile cells. Hence, when including cultured cells in the experimental system it
6 is necessary to limit pump cycling (and aerosol generation) to after the culture has reached its
7 exponential growth phase or reached a cell density where losses due to pump cycling don't
8 exceed cell creation rates.

9 The miniMART system (Figure 2) described here was designed to provide a gentle
10 method of plunging jet generation that would minimize destructive shear on cultured
11 organisms and still permit the continuous generation of aerosols for study. It was fabricated
12 using components that are readily available and constructed of stainless steel, plexiglass and
13 silicone wherever possible to minimize chemical contaminants and facilitate cleaning. The
14 main tank (25 x 25 x 30 cm, 19 L total volume) was made from 1.5 cm thick Plexiglass with
15 an o-ring sealed, 20 mm thick plexiglass lid to provide airtight integrity. Separate ports are
16 available for sampling both the atmospheric headspace and subsurface water in the tank.

17 Inside the tank, a 20 cm diameter, 8 cm deep, compartmentalized water wheel, , and
18 fabricated after an ancient sakia design, is rotated at approximately 8 RPM by an externally
19 mounted 1/15 HP motor attached to a shaft-sealed axle that penetrates the tank rear wall. The
20 two internal chambers of the wheel provide the intermittent release of a 70 ml water jet from
21 approximately 10 cm above the water surface within the tank (when filled with approximately
22 6 L of water) via a hole in the chamber wall. The plunging jet sweeps across the water surface
23 when a chamber crosses the apex of its rotation (maximum height above the water surface)
24 while the opposite chamber is synchronously filling beneath the water surface. The plunging
25 jet impacts the water surface and produces a bubble plume that mimics the plunging jet of
26 water from a breaking wave crest without the need for a powerful external pump.

27 Before experimentation the miniMART system is cleaned to minimize contamination.
28 The internal surfaces are scrubbed with 100 % percent isopropanol and then the entire system
29 is filled and the sakia wheel circulated with a 10 % isopropanol / deionized water solution for
30 approximately 30 min. After circulation the tank is drained and then rinsed and filled with
31 deionized water, and the system again circulated. Lastly, the system is flushed with filtered
32 freshwater or seawater for experimentation. The system is considered clean when

1 measurements of surface tension from water samples are the same as those from the filtered
2 water supply used for experimentation (approximately 72 mNm^{-1} at room temperature
3 measured using the Wilhelmy plate method with a Krüss K3 tensiometer.)

4

5 **3.1 Bubble size distribution measurements**

6 To examine the utility of the miniMART system compared to the original MART and
7 as an oceanic bubble plume proxy, the size distributions of bubbles within miniMART were
8 compared to those produced by sintered glass filters as well as to oceanic and laboratory wave
9 channel distributions. The glass filters were set at a depth of $\sim 25 \text{ cm}$ (filter surface to water
10 surface) and dry nitrogen gas (0.5 L min^{-1}) was pumped through four filters, two 90 mm
11 diameter type E filters and two 25 mm diameter type A filters, similar to the setup of Keene et
12 al. (2007). A further description can be found in Stokes et al. (2013)

13 The sintered glass filter and plunging sheet bubble size distributions were obtained
14 utilizing methods described previously by Deane and Stokes (2002). In brief, bubble plumes
15 were imaged a few centimeters from the side of the tank using a Nikon high-resolution digital
16 camera (Figure 3). The distribution of bubble sizes was then obtained through computer-aided
17 analysis of the images. The cross-sectional area of individual bubbles within a selected image
18 were determined and then transformed into equivalent spherical radii. This data combined
19 with an estimate of the imaging volume formed the basis of the bubble size distributions
20 presented in Figure 1.

21 The reference distribution for a laboratory plunging breaking wave from Deane and
22 Stokes (2002) is in absolute units of bubbles $\text{m}^{-3} \mu\text{m}^{-1}$ radius increment, which is standard for
23 the oceanographic literature. The distributions for sintered glass filters and plunging water
24 were variable, depending on air flow, plunging sheet height and roughness, among other
25 factors in the MART. To facilitate comparison with the breaking wave, the bubble size
26 distributions for the sintered glass filters and plunging waterfall were first converted to
27 probability density functions (PDFs) and then scaled by 5.6×10^6 . The scaling factor was
28 determined to be the value that brought the miniMART, MART and breaking wave
29 distributions into agreement at a bubble radius of $\sim 1 \text{ mm}$.

30 Both MART and miniMART systems approximate the bubble size distribution scaling
31 laws found in breaking oceanic waves, including the production of bubbles larger than a_H (in

1 this case, approximately 1.5 mm radius). However, the number of bubbles larger than 0.1 mm
2 radius produced by miniMART is less than in MART by up to an order of magnitude. For
3 bubbles smaller than approximately 0.1 mm radius there is a greater concentration in
4 miniMART than in the original MART; this is attributed to the visible turbulent suspension of
5 these bubbles in the smaller volume of miniMART and the buildup of greater concentration as
6 plunging continues, whereas in the larger volume of the MART system these small bubbles
7 advect away from the plunging jet and more readily degas at the water surface.

8 **3.2 Aerosol size distributions and residence time**

9 Particle size distributions (PSDs) were determined by a commercially available
10 Scanning Mobility Particle Sizer (SMPS) (Wang and Flagan 1990) and Aerodynamic Particle
11 Sizer (APS) (Peters and Leith 2003). The SMPS measures particle mobility diameter (d_m) by
12 scanning the voltage across two electrodes within a differential mobility analyzer (DMA)
13 column (TSI, Inc., Model 3080). Sampled particles are directed past a 0.058 cm impactor to
14 remove particles too large for analysis and into the DMA column, which separates particles
15 by electrical mobility. The range of particle sizes which can be analyzed with this method is
16 dependent on the aerosol and sheath flow rates, which were set at 0.6 and 3.0 L min⁻¹,
17 respectively, which corresponds to particle diameters of approximately 10 – 600 nm.
18 Particles selected in the DMA are injected into a condensation particle counter (TSI, Inc.,
19 Model 3010), which counts the particles corresponding to the sizes selected by the DMA.
20 Reported size distributions are corrected for diffusive losses of particles using the SMPS
21 processing software.

22 The APS (TSI Model 3321) determines the aerodynamic diameter (d_a) of particles in
23 the 0.542 to 20 μm range by measuring particle time-of-flight. Particles were sampled at 5.0
24 L min⁻¹ (1.0 and 4.0 L min⁻¹, aerosol and sheath flow rates, respectively). To determine d_a ,
25 particles enter the inlet of the APS and pass between two separate paths of a continuous wave
26 laser split with a beamsplitter. From the transit time between the laser beams, the
27 aerodynamic diameter can be determined.

28 For both the SMPS and APS analysis, particles were initially passed through silica gel
29 diffusion driers, where they were dried to an RH of $35 \pm 3\%$. The d_m and d_a size distributions
30 recorded were merged to obtain an estimate of the geometric physical diameter (d_p) size
31 distribution across the size range of both instruments. For the purposes of merging, particles
32 sized by the SMPS were assumed to be of a spherical geometry, which allows for the relation:

1

(1)

2 Particles sized by the APS were assigned an effective density, ρ_{eff} , of 2.1 g cm^{-3} , a value
3 determined experimentally, which allows for conversion based on the relation:

4

$$d_p = \frac{d_a}{\sqrt{\frac{\rho_{\text{eff}}}{\rho_0}}} \quad (2)$$

5 with ρ_0 equal to unit density (i.e., 1 g cm^{-3}). Both instruments had their resolution set to 32
6 bins per decade for consistency in merging. The SMPS tends to undercount particles at the
7 high end of the distribution due to the cut-off from the particle impactor, while the APS can
8 undercount particles at the low end due to poor scattering efficiency of the smallest particles.
9 As a result, particle bins in the overlapping size region of the two methods were subsequently
10 removed, excluding the largest and smallest bins of the SMPS and APS, respectively (Figure
11 4a).

12 Particle sampling was conducted via a 10 mm internal diameter stainless steel tube
13 passed through a sealed gland in the miniMART lid and positioned with its inlet above the
14 bubble plume. The inlet was positioned at 2, 4, 8 and 15 cm above the water surface and
15 additional samples were taken with a cone-shaped flared funnel (7 cm mouth diameter)
16 attached to the end of the sampling tube and positioned approximately 1.5 cm from the water
17 surface. The greatest number concentration of particles was collected when the inlet was
18 positioned closest (2 cm) to the water surface and the number concentration decreased with
19 increasing inlet height. This is most evident in the APS data, whereas the SMPS data showed
20 light variation attributed to the noise in the sample signal due to the smaller number of
21 particles counted by the CPC in each individual size bin during an SMPS scan. The addition
22 of the cone to the inlet decreased the number of particles collected, particularly in the smaller
23 size particles ($< 2 \mu\text{m}$) perhaps due to differential deposition on the cone walls.

24 During miniMART operation, carrier gas (either N_2 or zero air) is supplied to the
25 sealed tank at flow rates ranging between 1-10 slpm depending on instrument sampling
26 requirements. The carrier gas flow, combined with particle deposition within the tank,
27 determine the average lifetime of a particle in the system prior to sampling. The e-folding
28 time with respect to mixing is set by the headspace volume ($\sim 10 \text{ L}$) and the carrier gas flow
29 rate. For the three flow rates studied here (1.6, 2.6, and 3.6 slpm) the average particle

1 lifetimes with respect to mixing are 5.6, 3.4, and 2.5 minutes, respectively. To assess
2 deposition within the tank, we arrest plunging and particle production and monitor the decay
3 in the size dependent number concentration. Size dependent decay rates are shown in Fig. 5 as
4 a function of carrier gas flow. The deviation in the decay from that determined from mixing
5 alone is a low-bound on particle deposition within the tank. Actual deposition rates are likely
6 faster when the water wheel is turning and the jet is plunging. As shown in Fig. 5, particle
7 deposition is strongly size dependent, where the observed particle lifetimes span between
8 approximately 1 and 4 minutes for a carrier gas flow rate of 1.6 slpm.

9 In a separate experiment, aerosol PSDs from a separate miniMART were characterized
10 using a Scanning Electrical Mobility Sizer (SEMS) instrument (BGI Model 2002). The
11 SEMS is similar to the SMPS in that particles are characterized according to their electrical
12 mobility diameters. However, the SEMS DMA design allows for measurement to larger
13 mobility diameters. Here, the range of measured diameters was 10.3 nm to 946 nm. The
14 SEMS was operated with an impactor with a 50% cutoff $d_a \sim 1,150$ nm at the 0.36 lpm sample
15 flowrate, which corresponds to a $d_m \sim 770$ nm, assuming $\rho_{\text{eff}} = 2.1 \text{ g cm}^{-3}$. The effective
16 averaging time at each size, which determines the particle counting statistics, was either 5 or
17 10 s; the results from both were similar so only the 10 s results are presented here. The
18 measured size distributions were corrected for diffusive losses within the SEMS assuming
19 that the effective length of the SEMS (consisting of the DMA column, ^{210}Po bipolar diffusion
20 charger, 12 in. Nafion drier and other tubing) was 11 m (Wiedensohler et al., 2012). In the
21 experiment using the SEMS, the flowrate of carrier gas through miniMART was 0.86 slpm,
22 which is lower than that in the SMPS + APS experiments discussed above. Particles were
23 sampled from miniMART through a silica gel diffusion drier (RH < 20%) and then the flow
24 was split to the SEMS (0.36 lpm) and to the atmosphere (0.5 lpm). The tank was filled to 13
25 cm from the bottom of the tank with a 3.5% NaCl solution in MilliQ water. The 9.5 mm OD
26 (7.5 mm ID) stainless steel sampling tube was positioned 2 cm above the water surface and
27 the tube inlet was cut at 45° to prevent clogging with water. A total of 16 sequential PSD
28 scans were measured after the system reached steady state. The average of these 16 scans are
29 shown in Figure 4b. The mode peak of the SEMS PSD was around 200 nm, similar to other
30 results and similar to that for MART in Stokes et al. (2013).

31 Although the average PSD from the miniMART measured using the SEMS peaks in
32 the same general size range as the SMPS, there are distinct differences. In particular, the

1 SEMS measurements indicate a more substantial falloff in concentration towards smaller
2 sizes than do the SMPS measurements. The SEMS and APS measurements are in reasonable
3 agreement in terms of the shape of the distribution at larger sizes. The greater apparent fall off
4 in the SEMS PSD at small sizes could indicate that the internal diffusion correction applied
5 was too small (or too large in the SMPS) or that diffusional losses between the miniMART
6 and sizing instrumentation were larger in the SEMS experiments, perhaps due to the smaller
7 flow rate. Future experiments in which the SMPS and SEMS are simultaneously used to
8 characterize PSDs from the miniMART will help to resolve this discrepancy. Regardless, the
9 generally good correspondence of the PSDs from miniMART with PSDs of nascent SSA
10 from breaking waves (Prather et al., 2013) and the MART (Stokes et al., 2013) suggests that
11 the miniMART can operate as a suitable SSA mimic.

12 **4 Comparison of miniMART to other generation methods**

13 As noted by Sellegrí et al. (2006) and Fuentes et al. (2010), a plunging water jet best
14 replicates the bubble plumes generated by an oceanic whitecap. Comparison of the bubble
15 plume formed by the miniMART system to those generated by air flow through sintered glass
16 filters and to those formed in oceanic waves and within the larger MART system (Figure 1)
17 illustrates that a plunging sheet of water forms a broader spectrum of bubble sizes than the
18 sintered glass filters tested, including bubbles larger than about 1 mm in radius. The slopes of
19 the bubble density size spectrum in the miniMART plumes are very similar to the slopes of
20 oceanic and laboratory breaking waves at sizes smaller and larger than the Hinze scale (a_H) as
21 well as to the larger MART system. For comparison, the bubble plumes generated by sintered
22 filters have a much narrower size spectrum and tend not to include bubbles larger than about
23 800 μm radius.

24 The bubble plumes generated by the plunging jet within miniMART penetrate
25 approximately 15 cm beneath the water surface which isn't as deep as the plumes generated
26 by MART or by spilling breakers in the lab and ocean (Deane and Stokes 2002). However,
27 the intermittent cycling of the plunging jet in miniMART system allows the bubble plume and
28 resulting surface foam patch to evolve over time creating a bubble and aerosol source that
29 seems to be a fairly close match to the decaying patches of foam produced by whitecaps than
30 that provided by constant, stationary jets. The importance of decaying foams (as opposed to
31 pseudo steady state foams, for which decay rates are matched by bubble entrainment rates)
32 remains an open question, but may be important. For example, the jet drop production

1 mechanism may be somewhat suppressed in steady state foams if they are more than a single
2 bubble layer thick because of the top layer of foam film can absorb jet drop aerosols produced
3 at the air-water interface (Collins et al. 2014). Foams allowed to decay even if they are
4 initially three dimensional in structure, will eventually devolve into two-dimensional rafts of
5 bubbles which will not suppress jet drops.

6 The particle number distribution measured using the miniMART and MART system
7 are similar to the size distribution obtained by Fuentes et al., it is notable that the particle
8 number distribution obtained using the miniMART (Figure 4) and MART systems have less
9 pronounced characteristics of sub-100 nm modes, with the dominant number distribution
10 mode around 200 nm, broadly tailing off to both larger and smaller sizes (see details for
11 MART in Figure 5, of Stokes et al. 2013). This result is consistent with the broad bubble size
12 spectrum and accurate representation of bubbles larger than 1 mm that is achieved by both
13 miniMART and the larger MART system. Particle number distributions measured in both are
14 in strong agreement with those previously measured from breaking waves in the Scripps
15 Institution of Oceanography Hydraulics Laboratory (Prather et al., 2013). These
16 measurements highlight the importance of an accurate representation of bubble formation
17 processes in the creation of sea-spray aerosol in the laboratory. The primary difference
18 between the miniMART and MART systems is the lower particle flux generated by the
19 smaller and less energetic plunging jet in minMART. For example, the sub and super micron
20 sized particle number, surface area and mass concentration in MART were approximately
21 5000 and 345 cm^{-3} , 1260 and $2800 \mu\text{m}^2 \text{ cm}^{-3}$, and 200 and $1735 \mu\text{g m}^{-3}$ (assuming a particle
22 density of 1.8 g cm^{-3}) respectively, at a flow rate of 3 slpm (Stokes et al. 2013). While for the
23 miniMART, these numbers were approximately 90 and 60 cm^{-3} , 160 and $900 \mu\text{m}^2 \text{ cm}^{-3}$, 50
24 and $125 \mu\text{g m}^{-3}$ respectively, at a flow rate of 2.6 slpm, necessitating longer sample
25 integration times for some instrumentation, like the SMPS.

26 The reduced particle number concentrations in miniMART, in comparison to MART,
27 can present a challenge for particle instrumentation (e.g., size resolved cloud condensation
28 nuclei measurements). For instruments where the noise is dominated by counting statistics,
29 signal-to-noise ratios can theoretically be improved by signal averaging. An important
30 consideration, with respect to miniMART, is the stability of the particle source and air
31 delivery as a function of instrument integration time. Allan variance can be used to determine
32 the timescale for which signal averaging in the miniMART will no longer improve instrument

1 signal-to-noise (Werle et al., 1993). Twelve continuous hours of 1s CPC measurements from
2 a miniMART containing a 500 mM NaCl solution are shown in Figure 6A. The Allan
3 variance was calculated from this data and is shown in Figure 6B. The analysis indicates that
4 improvement in signal-to-noise will be achieved for averaging times up to 100s, after which
5 further signal averaging will result in a decrease in the signal-to-noise ratio. Further work is
6 required to establish the experimental factors that control this optimum averaging time.

7 A primary motivation for the fabrication of miniMART was to create an SSA
8 analogue that allowed continuous aerosol sampling during the growth and culturing of
9 planktonic cells. Figure 7 shows data collected during a 12-day miniMART incubation of
10 sand-filtered seawater spiked with nutrients at time 0. Aerosols were sampled continuously
11 with an APS from the tank headspace with a carrier gas flow of 1.9 slpm. In addition,
12 chlorophyll A concentrations and dissolved organic matter (cDOM) concentrations were
13 measured at semi-regular intervals from miniMART water drawn via a peristaltic pump into a
14 closed-loop analysis system (Wetlabs Ecotriplet), and then returned, to prevent the loss of
15 water from the system during sampling. Exponential growth of microorganisms (primarily
16 diatoms) peaks around day 4 with an increase in the number density of aerosols increasing
17 after the initial bloom and while the chlorophyll A concentrations drop, associated with the
18 death of the diatoms and rapid increase in the number of bacteria and viruses which cause
19 cellular lysis and the increase in dissolved organics. Similar preliminary experiments have
20 been run showing multiple microbial blooms and crashes during miniMART incubations for
21 weeks in duration. Understanding the factors that drive the variability in the produced SSA
22 particle concentrations that is evident in Fig. 7 is the subject of future work.

23

24 **5 Conclusions**

25 In order to mimic the SSA created by oceanic whitecaps any surrogate system must
26 reproduce the complex two-phase flows, bubble plumes and surface foam patches naturally
27 generated during a breaking wave. These conditions can be accurately replicated in large
28 seawater breaking wave channels, however these facilities are not readily available, and due
29 to their extremely large volume it is extremely difficult to enclose them for high fidelity
30 aerosol sampling and difficult to carefully control the environmental conditions to allow
31 replicate experiments. Sintered glass filters (frits) bubbling air in an enclosed container

1 produce controllable plumes, however the bubbles produced are constrained to a narrow size
2 spectrum much more narrow than that observed in a natural whitecap.

3 When using plunging water to create bubble plumes, it is important that the falling
4 sheet or jet have the appropriate scale of surface roughness before impacting the water surface
5 in order to create the correct sized voids along the air/water interface (Zhu et al. 2000). The
6 larger voids are important for producing the correct plume bubble size distribution that
7 includes bubbles larger than the Hinze scale. Stationary, narrow cross-sectional area and high
8 velocity jets may not entrain large bubbles characteristic of whitecaps without the correct
9 scale of disturbances on their surface before impacting the water.

10 It is apparently important that any bubble plume surrogate provide the correct
11 intermittency in production. Natural whitecap plumes and the resulting surface foam evolve
12 over a time scale of seconds to tens of seconds, whereas continuous water jets impacting the
13 surface at a fixed location create subsurface flow fields unlike breaking events. Continuous
14 sparging of air through frits and nozzles or air entrainment by continuous jets can also create
15 three dimensional surface foams that do not evolve and dissipate like those within oceanic
16 whitecaps and these can bias physical and chemical attributes of the aerosols created when the
17 bubbles rupture (Prather et al. 2013, Collins et al. 2014).

18 The bubble plume and resulting aerosol particle size distribution generated within the
19 miniMART and MART systems resembles that generated from breaking waves within the
20 SIO glass-walled wave channel. Confining the bubble generation to a smaller headspace air
21 volume (< 50 L in the MART and ~ 10 L in miniMART) as compared to the wave channel,
22 permits a significant increase in particle number concentrations (from 100, to > 5000, to
23 approximately 500 particles cm^{-3} , for the wave channel, MART and miniMART respectively).
24 As a result, the surrogate MART and miniMART systems enable a wide variety of
25 measurements (e.g., size resolved hygroscopicity and heterogeneous reactivity) that are not
26 feasible at the low number concentrations produced in the wave channel and allow for the
27 controlled study of the chemistry and physics of marine bubbles, foam and aerosols. In these
28 systems, experiments are more easily repeatable even while environmental variables, like the
29 seawater and atmospheric chemistry and the physical forcing mechanisms controlling the
30 plume dynamics are manipulated. Furthermore, miniMART allows the long-term growth and
31 monitoring of delicate planktonic cell cultures while continuously producing aerosols for
32 study.

1

2 **Acknowledgements**

3 This research was conducted within the Center for Aerosol Impacts on Climate and the
4 Environment (CAICE), a National Science Foundation Center for Chemical Innovation
5 (CHE-1305427).

6

1

2 **References**

3 Bezzabotnov, V. S., Bortkovskii, R. S., and Timanovskii, D. F.: On the structure of the two-
4 phase medium generated at wind-wave breaking, *Izvestiya Akademii Nauk SSR, Fizika*
5 *Atmosfery I Okeana*, 22, 1186-1193, 1986.

6 Bowyer, P. A.: Video measurements of near-surface bubble spectra, *J. Geophys. Res.*,
7 106(C7), 14179-14190, 2001.

8 Braban, C. F., Adams, J. W., Rodriguez, D., Cox, R. E., Crowley, J. N., and Schuster, G.:
9 Heterogeneous reactions of HOI, ICl and IBr on sea salt and sea salt proxies, *Phys. Chem.*
10 *Chem. Phys.*, 9, 3136-3148, 2007.

11 Cai, Y., Montague, D. C., Mooiweer-Bryan, W., and Deshler, T.: Performance Characteristics
12 of the Ultra High Sensitivity Aerosol Spectrometer for Particles between 55 and 800nm:
13 Laboratory and Field Studies, *J. Aerosol Sci.*, 39, 759-769, 2008.

14 Cipriano, R. J. and Blanchard, D.: Bubble and Aerosol Spectra Produced by a Laboratory
15 "Breaking Wave", *J. Geophys. Res.*, 86(C9), 8085-8092, 1981.

16 Cloke, J., McKay, W. A., and Liss, P. S.: Laboratory investigations into the effect of marine
17 organic material on the sea-salt aerosol generated by bubble bursting, *Mar. Chem.*, 34, 77-95,
18 1991.

19 Collins, D. B., Zhao, D. F., Ruppel, M. J., Laskina, O., Grandquist, J. R., Modini, R. L., ... &
20 Deane, G. B.: Direct aerosol chemical composition measurements to evaluate the
21 physicochemical differences between controlled sea spray aerosol generation schemes.
22 *Atmospheric measurement techniques*, 7(11), 3667-3683, 2014.

23 Deane, G. B., and Stokes, M. D.: Scale dependence in bubble creation mechanisms in
24 breaking waves, *Nature*, 418, 839-844, 2002.

25 Deane, G. B., and Stokes, M. D.: Model calculations of the underwater noise of breaking
26 waves and comparison with experiment, *J. Acoust. Soc. Am.*, 127, 3394-3410, 2010.

27 de Leeuw, G., and Coehn, L.: Bubble size distributions on the North Atlantic and North Sea,
28 *Gas Transfer at Water Surfaces*, *Geophysical Monographs* 127, 271-277, 2002.

29 de Leeuw, G., and Leifeer, I.: Bubbles outside the plume during the LUMINY wind-wave
30 experiment, *Gas Transfer at Water Surfaces*, *Geophysical Monographs* 127, 295-301, 2002.

- 1 Facchini, M.C., Rinaldi, M., Decesari, S., Carbone, C., Finessi, E., Mircea, M., Fuzzi, S.,
- 2 Ceburnis, D., Flanagan, R., Nilsson, E.D, de Leeuw, G., Martino, M., Woeltjen, J., and
- 3 O'Dowd, C. D.: Primary submicron marine aerosol dominated by insoluble organic colloids
- 4 and aggregates, *Geophys. Res. Lett.*, 35, L17814, doi:10.1029/2008GL034210, 2008.
- 5 Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated
- 6 primary marine aerosol via bubble-bursting and atomization, *Atmo. Meas. Tech.*, 3, 141-162,
- 7 2010.
- 8 Herrero, S.: Bear attacks their causes and avoidance, Hurtig, McClelland & Stewart Co. Publ.
- 9 Toronto, 1985.
- 10 Hultin, K. A. H., Nilsson, E. D., Krejci, R., Martensson, E. M., Hagstrom, A., and de Leeuw,
- 11 G.: In situ laboratory sea spray production during the MAP 2006 cruise on the North East
- 12 Atlantic, *J. Geophys. Res.*, doi:10.1029/2009JD012522, 2010.
- 13 Keene, W. C., Maring, H. , Maben, J. R., Kieber, D. J., Pszenny, A. A. P., Dahl, E. E.,
- 14 Izaguirre, M. A., Davis, A. J., Long, M. S., Zhou, X., Smoydzin, L., and Sander, R.: Chemical
- 15 and physical characteristics of nascent aerosols produced by bursting bubbles at a model air-sea interface, *J. Geophys. Res.*, 112, D21202, doi:10.1029/2007JD008464, 2007.
- 16 Lamarre, E., and Melville, W. K.: Void-fraction measurements and sound-speed fields in
- 17 bubble plumes generated by breaking waves. *J. Acous. Soc. Am.*, 95, 1317-1328, 1994.
- 18 Lee, C., Sultana, C. M., Collins, D. B., Santander, M. V., Axson, J. L., Malfatti, F., ... &
- 19 Azam, F.: Advancing Model Systems for Fundamental Laboratory Studies of Sea Spray
- 20 Aerosol Using the Microbial Loop. *The Journal of Physical Chemistry A*, 119(33), 8860-
- 21 8870, 2015.
- 22 Leighton, T. G., Phelps, A. D., and Ramble, G. D.: Acoustic bubble sizing: from the
- 23 laboratory to the surf zone trials, *Acoustics Bull.*, May, 5-9, 1996.
- 24 Lewis, E. R., Schwartz, S. E.: Sea Salt Aerosol Production: Mechanisms, Methods,
- 25 Measurements, and Models: A Critical Review. American Geophysical Union, Washington,
- 26 D. C., 2004.
- 27 Leifer, I., and de Leeuw, G.: Bubble measurements in breaking-wave generated bubble plumes
- 28 during the LUMINY wind-wave experiment, *Gas Transfer at Water Surfaces, Geophysical*
- 29 *Monographs* 127, 303-309, 2002.

- 1 Leifer, I., and de Leeuw, G.: Bubbles generated from wind-steepled breaking waves: 1.
- 2 bubble plume bubbles. *J. Geophys. Res.* 111, C06020, doi:10.1029/2004JC00267, 2006.
- 3 Loewen, M. R., O'Dor, M. A. and Skafel, M G.: Laboratory measurements of bubble size
- 4 distributions beneath breaking waves, in, *Air-Sea Gas Transfer*, Third International
- 5 Symposium on Air-Water gas transfer, Jahne, B. and Monahan E.C (eds) AEON Verlag &
- 6 Studio, Germany, pp. 337-345, 1995.
- 7 Martensson, E. M. , Nilsson, E. D., Cohen, L. H., and de Leeuw, G.: Laboratory simulations
- 8 and parameterization of the primary marine aerosol production, *J. Geophys. Res.*, 108(D9),
- 9 4297, doi:10.1029/2002JD002263, 2003.
- 10 McNeill, V. F., Patterson, J., Wolfe, G. M., and Thornton, J. A.: The effect of varying levels
- 11 of surfactant on the reactive uptake of N₂O₅ to aqueous aerosol, *Atmos. Chem. Phys.*, 6,
- 12 1635–1644, 2006.
- 13 Melville, W. K.: The role of surface-wave breaking in air-sea interaction, *Annual Review of*
- 14 *Fluid Mechanics*, 28, 279-321, doi: 10.1146/annurev.fl.28.010196.001431, 1996.
- 15 Monahan, E. C., and Zeitlow, C. R.: Laboratory comparisons of fresh-water and salt-water
- 16 whitecaps. *J. Geophys. Res.*, 74, 6961-6966, 1969.
- 17 Niedermeier, D., Wex, H., Voigtlander, J., Stratmann, F., Bruggemann, E., Kiselev, A., Henk,
- 18 H., and Heintzenberg, J.: LACIS-measurements and parameterization of sea-salt particle
- 19 hygroscopic growth and activation, *Atmos. Chem. Phys.*, 8, 579– 590, 2008.
- 20 Peters, T. M., and Leith, D.: Concentration measurement and counting efficiency of the
- 21 aerodynamic particle sizer 3321. *Journal of Aerosol Science*, 34(5), 627-634, 2003.
- 22 Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D., DeMott, P. J., ...
- 23 & Moffet, R. C.: Bringing the ocean into the laboratory to probe the chemical complexity of
- 24 sea spray aerosol, *Proceedings of the National Academy of Sciences*, 110(19), 7550- 7555,
- 25 2013.
- 26 Rapp, R. J., and Melville, W. K.: Laboratory measurements of deep-water breaking waves.
- 27 *Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and*
- 28 *Engineering Sciences*, 331(1622), 735-800, 1990.

- 1 Riziq, A., Erlick, C., Dinar, E., and Rudich, Y.: Optical properties of absorbing and non-
- 2 absorbing aerosols retrieved by cavity ring down (CRD) spectroscopy, *Atmos. Chem. Phys.*,
3 7, 1523– 1536, 2007.
- 4 Saul, T. D., Tolocka, M. P., and Johnston, M. V.: Reactive uptake of nitric acid onto sodium
5 chloride aerosols across a wide range of relative humidities, *J. Phys. Chem. A*, 110, 7614–
6 7620, 2006.
- 7 Sellegrí, K., O'Dowd, C. D., Yoon, Y. J., Jennings, S. G., and de Leeuw, G.: Surfactants and
8 submicron sea spray generation, *J. Geophys. Res.*, 111, D22215, 2006.
- 9 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.
10 (eds.):IPCC, 2007: Climate Change 2007: The Physical Science Basis. Contribution of
11 Working Group I to the Fourth Assessment, Cambridge University Press. 2007.
- 12 Stokes, M. D., Deane, G., Vagle, S., and Farmer, D.: Measurements of large bubbles in open-
13 ocean whitecaps, *Gas Transfer at Water Surfaces*, Geophysical Monographs 127, 279-284,
14 2002.
- 15 Svenningsson, B., Rissler, J., Swietlicki, E., Mircea, M., Bilde, M., Facchini, M. C., Decesari,
16 S., Fuzzi, S., Zhou, J., Mønster, J., and Rosenørn, T.: Hygroscopic growth and critical
17 supersaturations for mixed aerosol particles of inorganic and organic compounds of
18 atmospheric relevance, *Atmos. Chem. Phys.*, 6, 1937–1952, 2006.
- 19 Taketani, F., Kanaya, Y., and Akimoto, H., Heterogeneous loss of HO₂ by KCl, synthetic sea
20 salt, and natural seawater aerosol particles, *Atmos. Environ.*, 43(9), 1660–1665, 2009.
- 21 Tseng, R-S, Viechnicki, J., Skop, R., Brown, J.: Sea-to-air transfer of surface-active organic
22 compounds by bursting bubbles. *J. Geophys. Res.*, 97(4), 5201-5206, 1992.
- 23 Tyree, C. A., Hellion, V. M., Alexandrova, O. A., and Allen, J. O.: Foam droplets generated
24 from natural and artificial seawaters, *J. Geophys. Res.*, 112, D12204,
25 doi:10.1029/2006JD007729, 2007.
- 26 Wallace, G. T., and Duce, R. A.: Transport of particulate organic matter by bubbles in marine
27 waters. *Limnology and Oceanography*, 23(6), 1155-1167, 1978.
- 28 Wang, S. C., and Flagan, R. C.: Scanning electrical mobility spectrometer. *Aerosol Science*
29 and *Technology*, 13(2), 230-240, 1990.

- 1 Werle, P., Mucke, R., and Slemr, F.: The Limits of Signal Averaging in Atmospheric Trace-
- 2 Gas Monitoring by Tunable Diode-Laser Absorption-Spectroscopy (TDLAS), *Appl. Phys. B*
- 3 *Photo.*, 57(2), 131–139, 1993.
- 4 Wiedensohler, A., Birmili, W., Nowak, A., Sonntag, A., Weinhold, K., Merkel, M., Wehner,
- 5 B., Tuch, T., Pfeifer, S., Fiebig, M., Fjäraa, A. M., Asmi, E., Sellegri, K., Depuy, R., Venzac,
- 6 H., Villani, P., Laj, P., Aalto, P., Ogren, J. A., Swietlicki, E., Williams, P., Roldin, P.,
- 7 Quincey, P., Hüglin, C., Fierz-Schmidhauser, R., Gysel, M., Weingartner, E., Riccobono, F.,
- 8 Santos, S., Grüning, C., Faloon, K., Beddows, D., Harrison, R., Monahan, C., Jennings, S. G.,
- 9 O'Dowd, C. D., Marinoni, A., Horn, H.-G., Keck, L., Jiang, J., Scheckman, J., McMurry, P.
- 10 H., Deng, Z., Zhao, C. S., Moerman, M., Henzing, B., de Leeuw, G., Löschau, G., and
- 11 Bastian, S.: Mobility particle size spectrometers: harmonization of technical standards and
- 12 data structure to facilitate high quality long-term observations of atmospheric particle number
- 13 size distributions, *Atmos. Meas. Tech.*, 5, 657-685, doi:10.5194/amt-5-657-2012, 2012.
- 14 Wise, M. E., Freney, E. J., Tyree, C. A., Allen, J. O., Martin, S. T., Russel, L. M. and Buseck,
- 15 P. R.: Hygroscopic behaviour and liquid-layer composition of aerosol particles generated
- 16 from natural and artificial seawater, *J. Geophys. Res.*, 114, D03201,
- 17 doi:10.1029/2008JA013848, 2009.
- 18 Woodcock, A. H.: Salt nuclei in marine air as a function of altitude and wind force. *Journal of*
- 19 *Meteorology*, 10(5), 362-371, 1953.
- 20 Zhu, y., Oguz, H .N., and Prosperetti, A.: On the mechanism of air entrainment by liquid jets
- 21 at a free surface. *J. Fluid Mech.*, 404, 151-177, 2000.

1

2 **Figure Captions**

3 Figure 1. Inter-comparison of bubble size distributions from a laboratory breaking wave, the
4 plunging jet in the miniMART system, the original MART system, and two distributions from
5 sintered glass filters. The breaking wave distribution is in absolute units; the MART and
6 sintered glass filter bubble distributions have been scaled as described in the text. The sloped
7 solid lines indicate size distribution scaling laws as measured from oceanic bubble plumes
8 showing the change in slope at the bubble Hinze scale (where the lines intersect). Additional
9 information on the size distributions can be found in Stokes et al. 2013.

10

11 Figure 2. Image of miniature Marine Aerosol Reference Tank (miniMART). The primary tank
12 (25 x 25 x 30 cm, 19 L total volume) is made from 1.5 cm thick Plexiglass with an o-ring
13 sealed, 20 mm thick plexiglass lid. The intermittent plunging jet is formed by water escaping
14 from alternating chambers in a rotating water wheel labeled (A) and powered by an external
15 motor (C) connected to the wheel by a sealed shaft. A water exit port is indicated by the white
16 star and the water fill line indicated by the arrowhead (<). A vertical aerosol sampling tube
17 (B) penetrates the tank lid for sampling near the water surface. Additional ports are located in
18 the lid (D) for gas input and water sampling.

19

20 Figure 3. Side view of a partial bubble plume generated during miniMART operation. The
21 white scale bar at top of image is 1 cm. Bubbles both larger and smaller than the Hinze scale
22 are present. The free-fall distance between the exit hole of the waterwheel and the water
23 surface is approximately 10 cm (not seen in photograph).

24

25 Figure 4. a) Number concentrations of Sea Spray Aerosol (SSA) generated by miniMART.
26 The SSA particle diameter was measured at 35 +/- 3% relative humidity and converted to dry
27 diameter. SSA concentrations were measured using a TSI Scanning Mobility Particle Sizer
28 (SMPS) for SSA < ~500 nm and a TSI Aerodynamic Particle Sizer (APS) for SSA > ~600
29 nm. Concentrations are shown for SSA collected with the miniMART sample tube located
30 within 2, 4, 8 and 15 cm of the water surface as well as with a cone-shaped flared funnel (7
31 cm mouth diameter) positioned approximately 1.5 cm from the water surface. Red filled

1 circles show number concentrations of SSA diameter from miniMART filled with a 3.5%
2 NaCl solution using a SEMS (see Figure 4b). Blue filled circles show an example of a SSA
3 number concentration in unfiltered, natural seawater in a MART system from Collins et al.
4 (2014). b) The average number-weighted size distribution (black line) and the $\pm 1\sigma$ band
5 (gray region) measured by the SEMS. The red curve is a fit to the data assuming a single log-
6 normal distribution (median diameter = 189 nm, width = 2.32). The vertical dashed line at 770
7 nm indicates the 50% mobility-equivalent cutoff diameter for the SEMS impactor.

8

9 Figure 5. Normalized size dependent decay rates in particle number concentration (cm^{-3}) for
10 three different dilution air flow conditions: 1.6 slpm (A), 2.6 slpm (B), and 3.6 slpm (C).
11 Particle number concentrations are shown for size classes 0.1 – 0.55 μm (from the SMPS),
12 0.56 – 1.0 μm , 1.0 – 3.2 μm , and 3.4 – 10 μm (from the APS). The associated e-folding
13 lifetimes (τ) for each flow condition and size regime, and the expected decay rates from
14 dilution alone are discussed in the text.

15

16 Figure 6. (a) Twelve hour time series of 1 Hz CPC measurements from a miniMART
17 containing a 500 mM solution of NaCl. (b) Allan variance plot, calculated using the data
18 shown in the top panel. At long integration times, flow controller drift and temperature
19 fluctuations likely contribute to source fluctuations.

20

21 Figure 7. Example miniMART experimental time series for a 12-day incubation of nutrient-
22 spiked, filtered seawater. The top panel shows continuous APS determined aerosol size
23 number concentration for particles from 0.6 to 3.5 μm dry diameter. The center panel shows
24 chlorophyll-A concentration ($\mu\text{g/l}$) and the lower panel shows colored dissolved organic
25 matter (cDOM, ppb) from the miniMART bulk water during the incubation. Vertical bars
26 indicate ± 1 std dev.

27

1

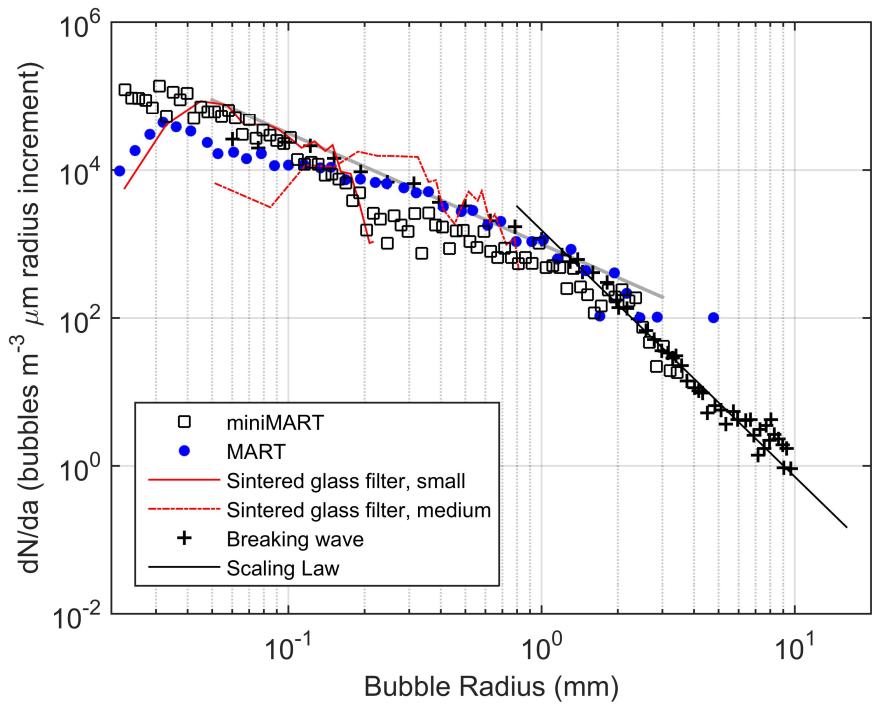


Figure 1

2
3
4

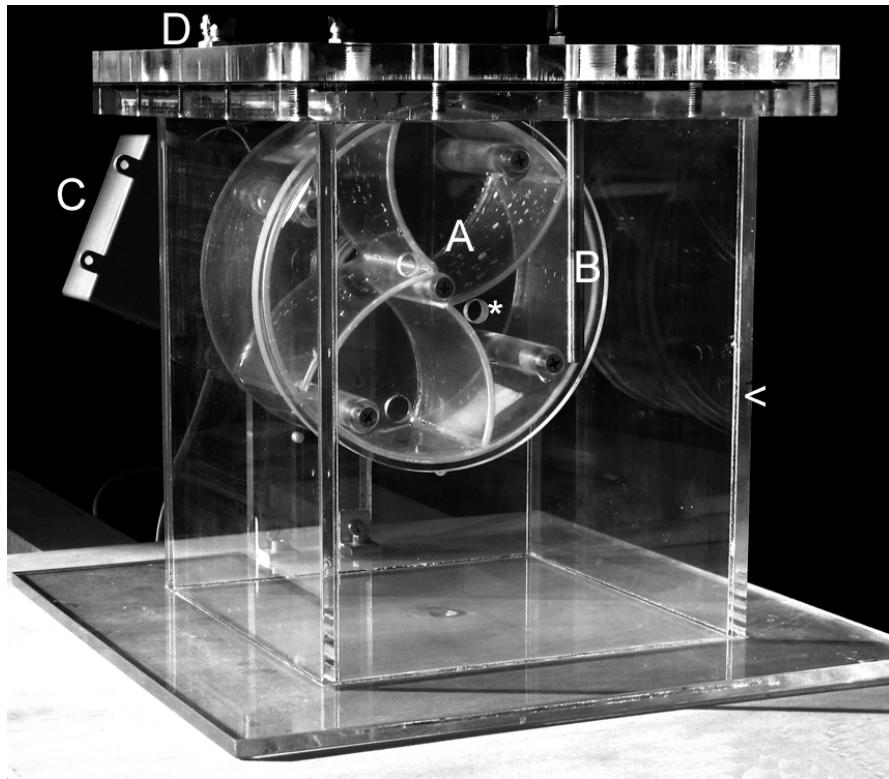


Figure 2

Figure 3

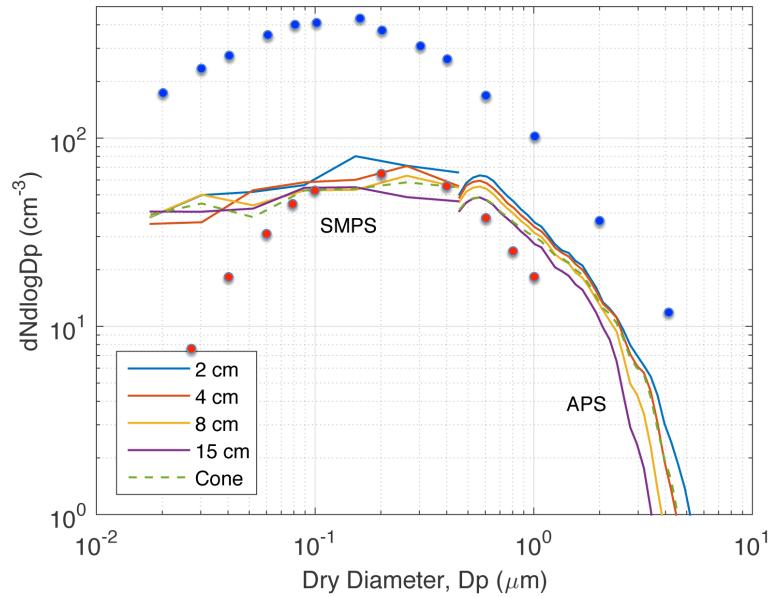


Figure 4a

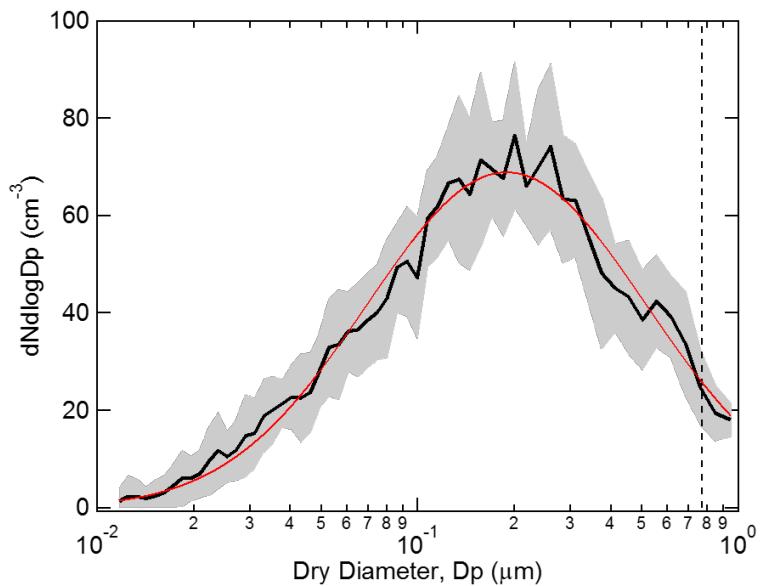


Figure 4b

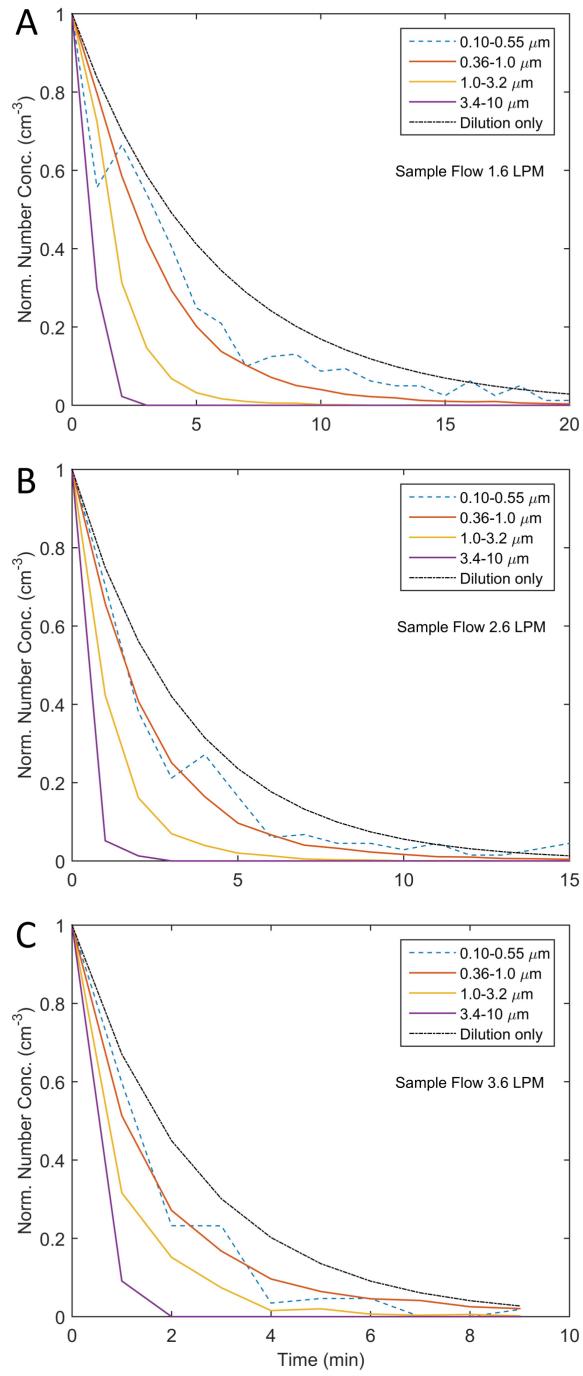


Figure 5

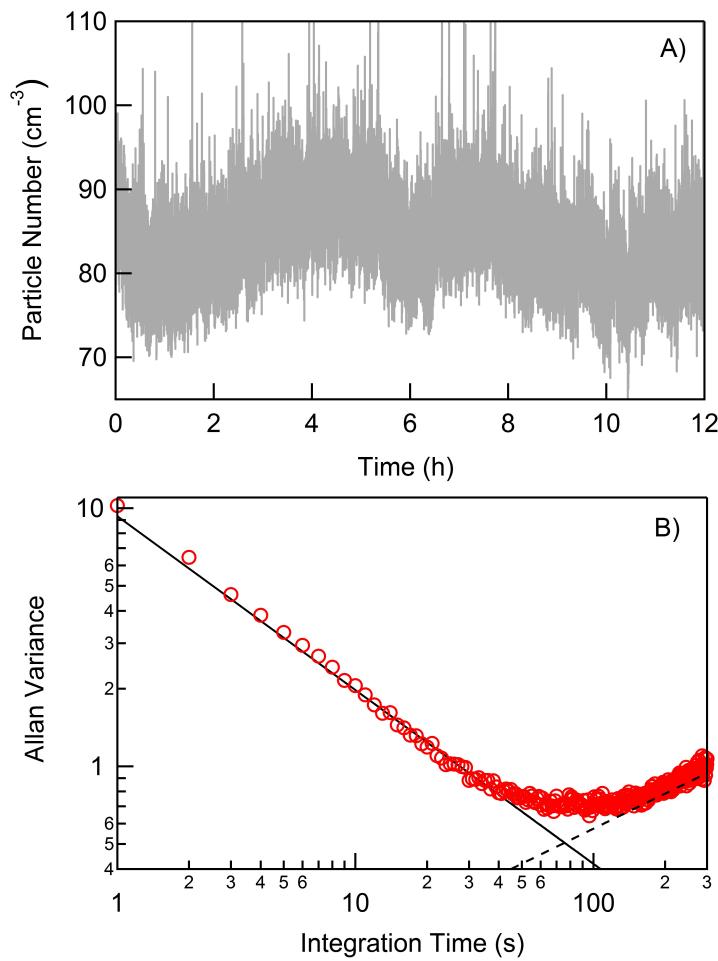


Figure 6

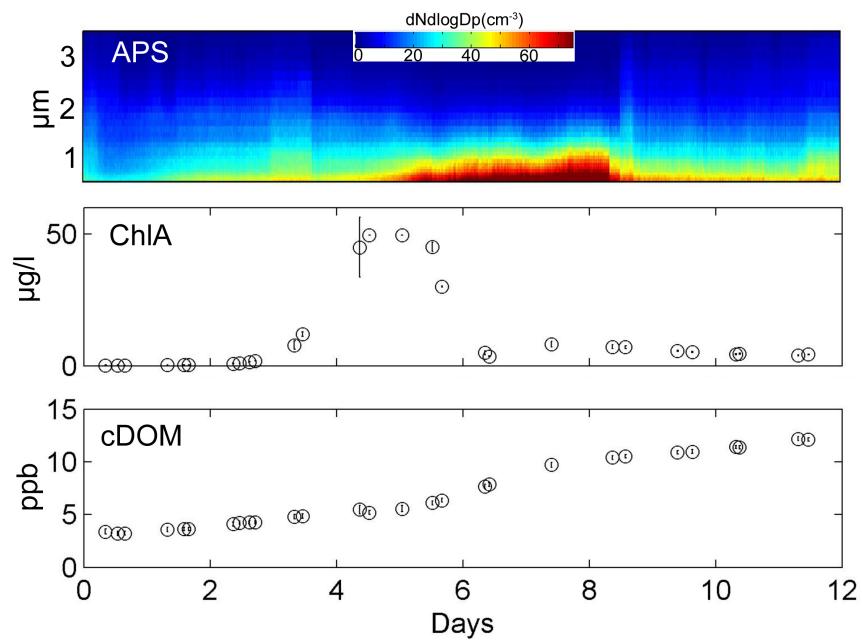


Figure 7